Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857722

RESUMO

Policies to reduce greenhouse gases associated with electricity generation have been a major focus of public policy in the United States, but their implications for achieving environmental justice among historically overburdened communities inappropriately remains a marginal issue. In this study we address research gaps in historical and current ambient air emissions burdens in environmental justice communities from power plants participating in the Regional Greenhouse Gases Initiative (RGGI), the country's first market-based power sector emissions reduction program. We find that in RGGI states the percentage of people of color that live within 0-6.2 miles from power plants is up to 23.5 percent higher than the percent of the white population that lives within those same distance bands, and the percentage of people living in poverty that live within 0-5 miles from power plants is up to 15.3 percent higher than the percent of the population not living in poverty within those same distance bands. More importantly, the transition from coal to natural gas underway before RGGI formally started resulted in large increases in both the number of electric-generating units burning natural gas and total net generation from natural gas in environmental justice communities hosting electric-generating units, compared to other communities. Our findings indicate that power sector carbon mitigation policies' focusing on aggregate emissions reductions have largely benefitted non-environmental justice communities and have not redressed the fundamental problem of disparities in pollutant burdens between EJ and non-EJ communities. These must be directly addressed in climate change and carbon emissions mitigation policy.


Assuntos
Poluição do Ar , Gases de Efeito Estufa , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Carbono , Efeito Estufa , Humanos , Gás Natural , Centrais Elétricas , Estados Unidos
2.
Sci Total Environ ; 811: 151326, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757097

RESUMO

Cities are facing the twin pressures of greenhouse gas driven climatic warming and locally induced urban heating. These pressures are threatening populations that are sensitive to extreme heat due to sociodemographic factors including economic means. Heat-reducing infrastructure adaptation measures such as reflective "cool" materials can reduce urban temperatures. Here we examine the needs-based equity implications associated with heat-reducing cool roofing in Maricopa County, Arizona through application of high-resolution urban-atmospheric simulations. We simulate heatwave conditions and evaluate the air temperature reduction arising from uniform cool roof implementation (i.e., the entire urbanized county), and contrast results against simulated cooling impacts of needs-based targeted cool roof implementation in sociodemographically heat sensitive areas. We find that installing cool roofs uniformly, rather than in a targeted fashion, provides on average 0.66 °C reduction in the highest heat sensitivity area and 0.39 °C temperature reduction in the lowest heat sensitivity area due in part to a higher roof area density in the heat sensitive area. Targeting cool roof implementation yields 0.45 °C cooling in the most sensitive areas compared to 0.22 °C cooling in the least sensitive areas, meaning that needs-based targeted cool roofs in high sensitivity areas provide more relief than cool roofs targeted at low sensitivity areas, thus providing more cooling where it is most needed. Needs-based targeted implementation has the dual benefits of concurrently producing more than twice as much cooling and reducing heat exposure for the largest absolute number of individuals in the densely populated, highly heat sensitive areas. Targeting cool roof implementation to high heat sensitivity areas, however, does not achieve thermally equal temperatures in Maricopa County because the high sensitivity areas were substantially warmer than low sensitivity areas prior to implementation. This study illustrates the utility of a new "Targeted Urban Heat Adaptation" (TUHA) framework to assess needs-based equity implications of heat-reducing strategies and underscores its importance by examining the impacts of cooling interventions across sociodemographically heterogeneous urban environments.


Assuntos
Calor Extremo , Cidades , Temperatura Baixa , Temperatura Alta , Humanos , Fatores Sociodemográficos
3.
J Air Waste Manag Assoc ; 70(5): 481-490, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32101104

RESUMO

On January 25, 2018, the United States Environmental Protection Agency withdrew a 1995 policy that mandates the use of maximum achievable control technology (MACT) to regulate emissions from major sources of hazardous air pollutants (HAPs), a category of toxic chemicals that may be carcinogenic, mutagenic, or cause other adverse health effects. To better understand the implications and scope of the change in regulatory guidance for HAP emissions of major sources that may reclassify as area sources, the increase in emissions that could legally occur under the new policy is assessed here. Based on facility-level data from a 2014 HAP national emissions inventory, it is estimated that 70% of major sources of HAPs qualify for reclassification as area sources, which could result in a maximum of 35,030 tons per year (tpy) of additional HAP emissions if all sources successfully reclassified. This amount would nearly triple the total volume of HAPs that qualifying major sources emitted in 2014. On average, qualifying sources could emit individually an additional 18.4 tpy. In the 21 states and territories that follow only federal guidelines for controlling HAPs, it is more likely that the estimates presented here could materialize compared to states that have additional guidelines for area sources of HAPs. The quantitative analysis of the potential emission changes resulting from regulatory change is instructive for industry, state and federal decisionmakers, and interested members of the public looking to understand and anticipate how relevant stakeholders will be affected by this policy change.Implications: Withdrawal of a U.S. Environmental Protection Agency policy that mandates the use of maximum achievable control technology (MACT) to regulate emissions from major sources of hazardous air pollutants (HAPs) could result in higher emissions of toxic chemicals that may be carcinogenic, mutagenic, or cause other adverse health effects. Analysis of potential emission changes resulting from regulatory change is instructive for industry, state, and federal decisionmakers, and interested members of the public looking to understand and anticipate how relevant stakeholders will be affected by this policy change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Exposição Ambiental/prevenção & controle , Política Ambiental , Substâncias Perigosas , Humanos , Estados Unidos , United States Environmental Protection Agency
4.
Environ Health Perspect ; 121(2): 197-204, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23164621

RESUMO

BACKGROUND: Most heat-related deaths occur in cities, and future trends in global climate change and urbanization may amplify this trend. Understanding how neighborhoods affect heat mortality fills an important gap between studies of individual susceptibility to heat and broadly comparative studies of temperature-mortality relationships in cities. OBJECTIVES: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000-2008). METHODS: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods. RESULTS: Neighborhood scores on three factors-socioeconomic vulnerability, elderly/isolation, and unvegetated area-varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor. CONCLUSIONS: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.


Assuntos
Transtornos de Estresse por Calor/mortalidade , Características de Residência , Arizona/epidemiologia , Feminino , Sistemas de Informação Geográfica , Humanos , Masculino , Fatores de Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...